首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4047篇
  免费   175篇
  国内免费   225篇
化学   173篇
晶体学   1篇
力学   183篇
综合类   52篇
数学   3447篇
物理学   591篇
  2024年   4篇
  2023年   71篇
  2022年   83篇
  2021年   149篇
  2020年   207篇
  2019年   105篇
  2018年   106篇
  2017年   141篇
  2016年   187篇
  2015年   174篇
  2014年   295篇
  2013年   337篇
  2012年   286篇
  2011年   299篇
  2010年   250篇
  2009年   286篇
  2008年   180篇
  2007年   213篇
  2006年   206篇
  2005年   156篇
  2004年   71篇
  2003年   67篇
  2002年   76篇
  2001年   89篇
  2000年   66篇
  1999年   81篇
  1998年   56篇
  1997年   32篇
  1996年   17篇
  1995年   17篇
  1994年   9篇
  1993年   13篇
  1992年   9篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   14篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   4篇
  1976年   4篇
  1974年   2篇
  1966年   1篇
  1957年   1篇
排序方式: 共有4447条查询结果,搜索用时 46 毫秒
31.
Peristaltic flow of non-Newtonian nano fluid through a non-uniform surface has been investigated in this paper. The fluid motion along the wall of the surface is caused by the sinusoidal wave traveling with constant speed. The governing equations are converted into cylindrical coordinate system and assuming low Reynolds number and long wave length partial differential equations are simplified. Analytically solutions of the problem are obtained by utilizing the homotopy perturbation method (HPM). In order to insight the impact of embedded parameters on temperature, concentration and velocity some graphs are plotted for different peristaltic waves. At the end, some observations were made from the graphical presentation that velocity, pressure rise and nano particle concentration are increasing function of thermophoresis parameter Nt while temperature and frictional forces show opposite trend.  相似文献   
32.
An adaptive smooth unsaturated bistable stochastic resonance (ASUBSR) system for bearing fault signal detection is established. Based on the problem of output saturation and poor low-frequency suppression performance of classical bistable stochastic resonance (CBSR) system, an SUBSR with unsaturated characteristics is proposed. An ASUBSR system is designed by extracting the envelope spectrum of the input signal and resampling it to satisfy the adiabatic approximation condition, combining high-pass filter to filter out low-frequency interference, and using genetic algorithm to select the optimal system parameters. Through simulations and experiments, we found that the system can effectively suppress the interference of low-frequency and high-frequency, indicates that the system performs like a band-pass filter, and the output signal-to-noise ratio is better than that of the CBSR system. The proposed ASUBSR system has great application in the field of fault detection of rolling bearings.  相似文献   
33.
For the first time, the energy diffusion approximation is confronted at the percent level with the exact numerical modeling of thermal decay of a metastable state. This model is useful in many branches of natural sciences: e.g. in biology, nuclear physics, chemistry, etc. The exact (within the statistical errors about 2%) quasistationary decay rates result from the Langevin equations for the coordinate and conjugated momentum. For the energy (or action) diffusion approach, a Langevin-type equation for the action is constructed, validated, and solved numerically. The comparison of these two approaches is performed for four potentials (two of which are anharmonic) in a wide range of two dimensionless scaling parameters: i) the governing parameter G reflecting how high is the barrier with respect to the temperature and ii) the damping parameter φ expressing the friction strength. It turns out that the energy diffusion approach produces the rate which comes into 50%-agreement with the exact one only at φ < 0.02. Thus, we quantify, for the first time by our knowledge, the condition φ ≪ 1 known in the literature.  相似文献   
34.
During the past few years, abundant involvement of nanoparticles in improving the thermal extrusion systems and energy resources attracted the attention of numerous scientists recently. The significance of nanofluid in terms of working liquid directed for the enhancement of solar energy and thermal extrusion performances. Therefore, the present analysis deals with the thermal performances of bioconvection flow with nanoparticles suspended in a non-Newtonian fluid. Considering that the flow has been induced due to periodically accelerated surface. The activation energy consequences are also employed in the concentration equation. The flow problem is initially formulated in the form of partial differential equations. The dimensionless variables are reported to renovate such equations in the dimensionless style, which are tackled analytically by employing the homotopy analysis method. The significance of various physical parameters is estimated for the relevant distribution of velocity, temperature, concentration, and motile micro-organisms. The dimensionless local Nusselt number, local Sherwood number, and motile density number are numerically iterated via flow parameters. A convergence analysis is also presented. The detected observation can involve theoretical significance in various engineering processes, bio-fuel cells, solar energy systems, and enhancement of extrusion systems.  相似文献   
35.
To improve the numerical evaluation of weakly singular integrals appearing in the boundary element method, a logarithmic Gaussian quadrature formula is usually suggested in the literature. In this formula the singular function is expressed in terms of the distance between source point and field point, which is a real variable. When an anisotropic elastic solid is considered, most of the existing fundamental solutions are written in terms of complex variables. When the problems with holes, cracks, inclusions, or interfaces are considered, to suit for the shape of the boundaries usually a mapping function is introduced and then the solutions are expressed in terms of mapped complex variables. To deal with the trouble induced by the complex variables, in this study through proper change of variables we develop a simple way to improve the evaluation of weakly singular integrals, especially for the problems of anisotropic elastic solids containing holes, cracks, inclusions, or interfaces. By simple matrix expansion, the proposed method is extended to the problems with piezoelectric or magneto-electro-elastic solids. By using the dual reciprocity method, the proposed method employed for the elastostatic fundamental solution can also be applied to the elastodynamic analysis.  相似文献   
36.
37.
We establish the existence of solutions of the Cauchy problem for a higher-order semilinear parabolic equation by introducing a new majorizing kernel. We also study necessary conditions on the initial data for the existence of local-in-time solutions and identify the strongest singularity of the initial data for the solvability of the Cauchy problem.  相似文献   
38.
39.
This article presents vertically coupled, rectangular complementary split-ring resonator-shaped quad-band double-negative (DNG) metamaterial unit cells, that is, having both negative permittivity and permeability, which redirect negative refractive and also are not found in nature. The metamaterial is fabricated on magnesium zinc ferrite-based flexible microwave substrates, and the flexible substrates are chosen with two different concentrations of magnesium (Mg) denoted by Mg30 and Mg50 for 30% and 50% of Mg, which possess dielectric constants of 4.32 and 3.15 and loss tangents of 0.003 and 0.005, respectively. The proposed metamaterials are demonstrated by utilizing the CST microwave simulator, and their effective parameters are extracted according to the Nicolson-Ross-Wire method. With Mg30, the prepared, flexible metamaterial shows measured resonances at 3.70 GHz, 7 GHz, 8.60 GHz, and 9.78 GHz, whereas with Mg50 it shows the measured resonances at 4.10 GHz, 7.70 GHz, 9.33 GHz, and 10.62 GHz. Very good effective medium ratios (EMR) along with DNG properties are obtained, namely 6.5 and 5.85 for Mg30 and Mg50, respectively, with a physical dimension of 12.5 × 9.5 mm2 for both of the unit cells. Also, the electric field, magnetic field, and surface current distribution at different resonances and the polarization insensitivity at different polarization angles were observed. Thus, the designed new flexible substrate microwave materials based on DNG metamaterials are potential candidates for S-, C- and X-band applications, as well as for flexible microwave technologies.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号